A note on extended reduced rank-two Abaffian update schemes in the ABS-type methods

نویسندگان

  • Leila Asadbeigi
  • Mahmoud Paripour
چکیده

The ABS methods, introduced by Abaffy, Broyden and Spedicato, are direct iteration methods for solving a linear system where the ith iterate satisfies the first i equations, therefore a system of m equations is solved in at most m steps. Recently, we have presented a new approach to devise a class of ABS-type methods for solving full row rank systems [K. Amini, N. Mahdavi-Amiri, M. R. Peyghami, ABS-type methods for solving full row rank linear systems using a new rank two update, Bulletin of the Australian Mathematical Society 69 (2004) 17–31], the ith iterate of which solves the first 2i equations. Here, to reduce the space and computation time, we use a new extended rank two update formula for the Abaffian matrix so that the number of rows of the Abaffian matrix is reduced by two in every iteration. This extension along with the reduction offer more flexibility for the definition of the Abaffian matrix. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABS-Type Methods for Solving $m$ Linear Equations in $frac{m}{k}$ Steps for $k=1,2,cdots,m$

‎The ABS methods‎, ‎introduced by Abaffy‎, ‎Broyden and Spedicato‎, ‎are‎‎direct iteration methods for solving a linear system where the‎‎$i$-th iteration satisfies the first $i$ equations‎, ‎therefore a‎ ‎system of $m$ equations is solved in at most $m$ steps‎. ‎In this‎‎paper‎, ‎we introduce a class of ABS-type methods for solving a full row‎‎rank linear equations‎, ‎w...

متن کامل

A new multi-step ABS model to solve full row rank linear systems

ABS methods are direct iterative methods for solving linear systems of equations, where the i-th iteration satisfies the first i equations. Thus, a system of m equations is solved in at most m ABS iterates. In 2004 and 2007, two-step ABS methods were introduced in at most [((m+1))/2] steps to solve full row rank linear systems of equations. These methods consuming less space, are more compress ...

متن کامل

A note on "An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts"

The technique for order of preference by similarity to ideal solution (TOPSIS) is a method based on the ideal solutions in which the most desirable alternative should have the shortest distance from positive ideal solution and the longest distance from negative ideal solution. Depending on type of evaluations or method of ranking, different approaches have been proposing to calculate distances ...

متن کامل

ABS methods for continuous and integer linear equations and optimization

ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty year...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2007